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Abstract. We present some non-vanishing dual Stiefel-Whitney classes of
the Grassmann manifolds O(n)/O(4) x O(n —4) for n=2°+2 and n =2°+3
(s 2 3), providing a supplement to results of Hiller, Stong, and Oproiu. Some
applications are also mentioned.

1. Introduction

When studying some properties of a given smooth connected closed d-
dimensional manifold M, it may be useful to know its (total) dual Stiefel-
Whitney class, denoted by w(M). Actually, this is the Stiefel-Whitney class
of the normal bundle of any immersion of M into Euclidean space. If the ¢th
class wy(M) does not vanish, then M does not immerse in R¥9~1 and does
not embed in R+ (see, e.g., [12, Ch. 16]). Another interesting consequence
of wq(M) # 0 (see [3, Theorem 1.3]) is the nonexistence of 2t-regular maps

from M to RU4+149) (recall that a continuous map f : X — RV is said to be
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320 J. KORBAS and P. NOVOTNY

t-regular, if f(x1),..., f(z¢) are linearly independent over R for any t-tuple
x1,...,x¢ of distinet points of X).

Let G,, ;. denote the Grassmann manifold of unoriented k-dimensional vec-
tor subspaces in R™; as a homogeneous space, Gy, = O(n)/O(k) x O(n — k).
In the papers [9], [10], [4], one can find various results concerning non-
vanishing dual Stiefel-Whitney classes for several families of Gy, . In this
paper, we derive new results for k = 4.

It is known (Borel [2]), that the Za-cohomology algebra of the Grassmann
manifold is given by

H* (G i Lo) = Lofwi, . .., wg] /I,

where w = 14wy + we + - - - + wy, is the total Stiefel-Whitney class of the
canonical k-plane bundle v over Gy, 1, W = 1+ W1 + W2 + - - - + Wy, is the

total Stiefel-Whitney class of the complementary bundle v+, and I, is the

ideal generated by the homogeneous components of (1 +wy + -+ + wk)fl in
dimensions n — k+ 1,...,n. For the tangent bundle, it is also well known
(e.g. [5]) that TG ®y®v = ny. Applying v @+ =", where " is the
trivial n-plane bundle, we obtain for the dual Stiefel-Whitney class of G,
that

(1.1)  @(Gpp) =wly@vy@ny") =w(y®7) (L+w + -+ Dpyp)"

In general, calculations in the cohomology algebra H*(G), i; Z2) are very com-
plicated. Sometimes Grébner bases make them easier, as in [8]. In this paper,
we shall use Stong’s method presented in [11] and, starting from (1.1), we
shall show that some high-dimensional dual Stiefel-Whitney classes for the
Grassmann manifolds Gos ;24 and Gasyza (s 2 3) do not vanish. For later
references, we now briefly recall some facts from [11].

FACT (a). The cohomology algebra H*(Flag (R");Zs), where
Flag (R") = 0(n)/0O(1) x ... x O(1),

can be identified with

n

22[61,...,%]/([[(1%1-) - 1),

=1

where e; is the first Stiefel-Whitney class of the ¢th canonical line bundle
over Flag (R™).

Acta Mathematica Hungarica 123, 2009
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Fact (b). The obvious bundle projection 7 : Flag (R") — Gy, 1, induces
a cohomology monomorphism, 7 : H*(Gy, x; Z2) — H*(Flag (R"); Zs) , and
we have

k n

w(wm) =[[a+e), o (weh) = T] @ +e.

=1 i=k+1

Fact (c¢). The value of the class u € H*(G,, ) on the fundamental class of
G i, is the same as the value of 7*(u) - e’fflegfz .. .ek_leZ;ffleZ;gfz e n—1
on the fundamental class of Flag (R™).

FACT (d). The nonzero monomials in H'P(Flag (R")) are precisely those

of the form
n—1 n—i 0
60_(1) e 60_(2-) e ea,(n),

i.e. those with no repeated exponents.

2. Results

We first recall results of [10] and [4].

PROPOSITION 2.1 (Oproiu [10, Theorem 1(i)]; Hiller, Stong [4, Propo-
sition 4.1]). If k<25 <n—k and n 2%, then wy(Gni) #0 for ¢ =
k(2°+k—n—1).

PROPOSITION 2.2 (Hiller, Stong [4, Proposition 4.3]). If k<2571 —1
and n = 2% + 1, then wy(Gyp) # 0 for ¢ = 2° + k? — 2k.

Applying this to the case k = 4, we have the following.

COROLLARY 2.3. Let s 2 3.

(1) If 2571 +4 S n <25, then wy(Gna) #0 for ¢ =425 — dn + 12;

(ii) if n = 2%, then wlg(GnA) #0;

(iii) of n=2°+1, then wy(Gna) # 0 for g =2°+8;
(iv) if n=2°+4, then Wy(Gna) #0 for g =4-2°—4.

Indeed, (i) is directly implied by Proposition 2.1. Part (ii) is a special
case of (i). For s > 3, (iii) is implied by Proposition 2.2, and for s = 3, we
have w16(Gg4) # 0, as more generally wy2(Gag41%) # 0 by [4]. Part (iv) is a
special case of (i) (take s + 1 instead of s).

Results known up to now do not cover the Grassmann manifolds Gy, 4 with
n € {2%+ 2,2% 4 3}. For these, we shall prove the following theorem, antici-

pated by Professor Koichi Iwata in a conjecture, which he communicated to
the first named author in 1996.
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322 J. KORBAS and P. NOVOTNY

THEOREM 2.4. Let s = 3.

(i) If n=2°+2, then wy(Gna) # 0 for ¢ = 2571 + 4;

(ii) of n =2°+3, then wy(Gna) #0 for g =3-2°.

REMARKS 2.5. (a) Taking the 2nd exterior power of v @ v+ 22 19 over
G10,4, we readily see that TG94 @ A2(7) @ A2 (fyL) =~ 45 thus G'10,4 immerses
in R¥. At the same time, Theorem 2.4(i) implies that G194 does not im-

0

merse in R* and, more generally, Gas424 does not immerse in R&% =5 for
s 2 3. For s = 3, as we have seen, this non-immersion result can be improved
by no more than one, and is better than the non-immersion result implied
by [7, Proposition 5.1], attained by different methods. For s > 3, the non-
immersion dimension of [7] is better, but our wy(Gp4) # 0 gives interesting
geometric information (not provided by [7]) about the normal bundle of any
immersion of G, 4 in Euclidean space. We also note that Theorem 2.4(ii)
implies that G2s134 does not immerse in R72°-5,

(b) Another application of our result is the nonexistence of 2t-regular
maps from Gasy24 to R3(2" ' =1) and from Gosq34 to RU72°=3)  Recall that

(25F2-7)+1

(see [3]) there exists a 2t-regular map from Gas494 to R% and from

s+2_
Gieysa to RAET=3)+1

3. Proof of Theorem 2.4

PROOF OF 2.4(i). To prove that wy(Gas424) # 0 for ¢ = 25+ + 4, it suf-
fices to show that the cohomology class

(3.1) Wq(Gasy2.4) - w2 By

in the cohomology group H'P(Gasi9.4;Z2) = Zy does not vanish. By [11,
Lemma 1, p. 107], the value of (3.1) is the same (zero or nonzero) as the
value of

(3.2) i (0g(Gosgo,a) w3 )

in H*P(Ggsy1,4;Z2), where i: Gasi14 — Gasyoy is induced by the inclu-
sion RZ"+1 < R?**+2. Since i*(y) = v and i*(y1) = v~ @ ¢!, using (1.1), we
transform (3.2) to

i*<wq(7 QY ® (23 + 2)’YJ_) . w5578) — [w(,y ® 7/)71}(,)/1_)234-2](] . wgS78
= [whr @ +a} +- -+ @ _y)w(r)] wd

We shall need the following auxiliary result.
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LEMMA 3.3. For k 22, w2 =0 in H*(Gosy1,4;Z2).
PRrROOF. It suffices to show that ’u_)zs -x = 0 for every x such that u_)zs X
€ H"P(Gasy1,4;Z2). To show this, it suffices (see Fact (c)) to prove that

(3.4) T (Wf - x)ededesed el O €3 jeas

in H*P(Flag (R?**1);Zy) vanishes. The factor 7*(w? ) is nothing but the
2%th power of the kth elementary symmetric function in the variables es, eg,
...,€9s41. Since k = 2, in every monomial eilleg2 e eéfjll of (3.4), there is
at least one e; with the exponent i; = 2° 4+ 1. Hence the class (3.4) vanishes
(see Fact (d) or [11, Corollary, p. 106]). O

Using Lemma 3.3 and the identity w; = wj, one can transform (3.2) to

(35) " (0y(Garpaa) - wd ™) = [wly ©7)(1 + wf Yw(yH)], - wd

= [wly @ Nw(y")’], - wi = + [wly @ Nwet) wi] - wd

We now prove another auxiliary result.
LEMMA 3.6. In H*(Gasy1,4;Z2), we have

1\2 s s_
[wiy @ Nwy™) wi |y, - ws —F=0.
PROOF. In fact, we want to prove that
132 s 298
(3.7) [w(v ® y)w(y™) ]23+4 cwi - ws

vanishes. Let 7 : Gos—1,3 — Ga2s41,4 be the inclusion obtained as the composi-
tion 7 = lo j, where j : Gos_1,3 — Gas 3 and | : Gas 3 — Gasy1.4 are the “stan-
dard” inclusions, i.e., we have j*(v) =7, j*(vY) =yt @ e, I'(y) =y @ el
I*(yF) =~+. Hence i*(y) =7y @e, i*(vh) =+ @ e, and also i*(wy) = wy,
i*(wy) = wy, for every k. By [11, Lemma 3, p. 108], the value of (3.7) is the
same as the value of

#*([wly @ Vw(r) ] oy - wd ™)

= [w((re) @ (yoe))wirh)],.,, - wi

= [w(y @ Vw) w(r) ] 4o, 0F 8 = [w(y©7)] 5, - wE

But the dimension of the bundle v ® 7 in the latter is 9, hence was44(y ® )
= 0 (we have s = 3), which implies the lemma. O
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By Lemma 3.6, the second part of (3.5) vanishes. Hence, to show that
(3.2) does not vanish, we need to show that

25-8

(38) [wlyenw()’],-wd ™ = wy@y) (1+@f +-- +wh_s)] -w

q

in H*(Ggs41,4; Z2) does not vanish.
By [1], [6], we have
w(y®7) =1+ wi +wi +wf + (wiwi + wy)

+ (w%w% + w%w%) + (wlllwz + w%w%w% + wg) .

Obviously, w;(y ® v) ( 1+w?+...+ u‘;%s_?)) vanishes for 7 < 8 in dimension
251 + 4 hence (3.8) can be written as

ws ¥ (w10(y ® 7)W3s_g + wia(Y ® V) W3s_y)

9254 95 _
= (w%w2 + wiw? 8w§) W3s_5

s__ s__ s__ —
+ (w%wg Swi + w%wg ng + wg Swé) w%s,4.

To show that the latter is nonzero, we proceed in two steps (using Fact (c)
or [11, Observation, p. 106]).
Step (a). We verify that

S __ S __ _ S __ S __
A= w*((w%wg 4 wiw? 8w§) w§5_3)e?e%ege§ 125 ed. #£0,

Since m* (w3, _3) = €2e ... €3, 1, we have
4,29-8 2\ 32 292 253 3

(02, 254 2
A =7 (wiw; ~* 4+ wiws Pw3)eleseze; Ceg O ...€5:€50 1.

Recall (Fact (b)) that 7*(w;) is the ith elementary symmetric function in ey,
€9, €3, €4. In

% (,2, 254\ 3 2 952 25_3 3 2
Ay =7 (w1w2 )61626365 €5 ... €55€5s ]
X s__ s __ .
expressed in terms of eq, ez, ..., €25 471 (note that eg 262 3. e§Se§5+1 is pre-

cisely in this form in every monomial in A;), all the nonzero monomials must

not contain the factor e4 and must have ez in the first power. Hence the
. . s__ . .

contribution of ﬂ*(w%w% 4) to the nonzero monomials must not contain es3

nor e4, and we have

2 2°—4 .3 2 29-2 2.3 3 2
Ap = (e1 +e) (ere2)” Tejezese;s e C...€hs€3s 4
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2541 25-2 25-2 25-3 3 2
— 61 62 6365 66 e 825625+1
=0

+e2 e eged T2l 8 .. .ehse3eq # 0.

#0
The second part of A is given by
Ay = 1 (wiws “Sw}) efedeser el ... ed.ed iy
=" (w%wg 8) (efe3e; + elese] + eieze]
+ 626364) e‘i’e%egeg 72625 5. .egsegs_,_l.

Here every monomial either contains es4 (thus does not contain any e; with
the exponent zero), or contains ez with the exponent greater than 1 (thus
does not contain any e; in the first power). Hence Ay =0 and A = Ay + A

£0. O
Step (b). We verify that

o 4,,2°-8, 2 2, 25—6, 2
B = ((w1w2 wy +wjw;  Cws
-8, 4) =2 3,2, 25—4 2°-5 1
+ w2 wg) Was _ 4)61626365 €5 ...€3s = 0.

Since

—2 2 2 2 2 2 2
7T*(’LU2574) = 6566 e 625 + 6566 1623+1 + 6566 6 2625625+1

+ 6566 35_3638_1e§se%s+1 +--- 4+ 6567 .e%segsH + e%e% o egse%sﬂ,

we have
S __
B =" (wiwy “*w] + wiws “Owi +w) Pws)efeses

s __ S__ — -
.(eg eg O...e3 e Peg 0. ehe_jeheehe iy

25-2 2 73 5 2 3
+€ 6 625 26 1625654»1

28-2 253 6 3 4 3] 2
+e5 Teg .. .625_36_2625_16625+1 + -

2—225525425523
+ l l l l ..€§s€%s+1

22— 4]2—3 l25 4]2—5 3 2
. 625€2s+1).

+ e5
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326 J. KORBAS and P. NOVOTNY

. s_ s__ s__ .
After expressing m* (wiw3 Sw? + wiwi w3 +wi Pwi) in terms of e, e,
e3, e4, those parts of monomials containing powers of es, eg, . . ., €2s4+1 do not

change, hence only the first two summands in the large parentheses may con-
tribute to the nonzero monomials, while in the others, some of the exponents
are repeated. Thus we have

4, 25-8 2 2,25—6, 2 25—8 4\ 3 2~ 25-2 253 3
B:W*(wle wy + wijw,  Twsz + wy w3)61626365 € ... €E5s

=B

28— 25— 25— : 28—2 25—
—|—7r*(w‘11w2 Swi—i—w%wQ 6w§+w2 Sw?g)e‘fe%eg% €6 3...635_1e%se%s+1.

=B

Any nonzero monomial in B must have es in the first power. Hence all the
monomials coming from

S __ S__ S_
™ (wiws Pwi)eteseser Zeg C... el
s_ < s__ s__ <
= 1 (wiws “®)ededeieietedesel Zed .. el

vanish. For the same reason, the only candidates for nonzero monomials

. s_ q s_ s__ 4 .
coming from 7*(w3 Swi)efedeser Zes 2 ...ed. are those coming from
2°-8 4 4 4 32 292 293 3
(e1e2 + e1eq4 + egeq)” “Cefeqey - €7esese;  “ei ... €hs.

In every such monomial, the exponent of e4 is the same as one of the ex-

. s_ s__ - . . .
ponents in e2 2@% 3...e3, (the exponent j of ey satisfies 4 < j < 25 — 4).
Hence
S__ S__ s__
7 (w3 Pws) efeseser Zeg P...e3. = 0.

. . s __ S __ S __
Also the third part of By, having the form W*(w%wg 6w§) ededeser el P
...€3s, may have nonzero monomials only with es in the first power. Such
monomials come only from

s__ s __ S__
W*(w%wg 6) elese] - eledeses el 0. e
S __ S _ S__
=7 (w%wg 6) efeseseiel T2e2 T3 el

Here the nonzero monomials must contain ege? (otherwise one cannot “pro-
duce” the exponents 1 and 2), so the only candidates for nonzero monomials
are those two obtained from

2 2°-6 5 4, 92292 253 3
(e1 +e2)"(ere2)” eleseseier “eg U...€hs
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s s__ s__ s__ s_ s s__ s__
= 8% +1€§ 283836% 26% 3 e 6%5 + 6% 16% 6364218? 26% 3 e 6%5 ?é 0.

=0 #0

Hence we have By # 0.

Now we determine the value of By. Obviously, any nonzero monomial
in it must not contain e4 (it contains all the other classes e;). Hence the
contribution of

* 4..25-8, 2\ 3 2 25-2 2°-3 4 1 2
™ (w1w2 'LU4) €1€9€3€5 €q - €9s_1€95€9s 11
* 4.25-8Y 2.2 .2 2 3 2 29—-2 2%5-3 4 1 2
=T (w1w2 )61626364 *€1€9€3€5 €q <. €9s_1€95€9s 1

. . . S_ s__ S__
is zero. The contribution of W*(wg 8w§) ededeser Zed O .. €35 _1€3:€35 4

is also zero. Indeed, its nonzero monomials might only come from

* 2°-8) 4,4 4 3.2 25-2 2°5-3 4 1 2
™ (w2 ) €1€9€3 * €1€9€3E€5 €g <. €9s_1€9s€9s 11
% 2°-8\ 7 .65 25-2 2°5-3 4 1 2
=T (w2 ) 61626365 86 e 625_1625625+1,

but here, in every monomial, there is no e; with exponent 3, hence every

. . . S__ 5__
monomial vanishes. We are left with the class ﬂ*(w%wg 6w§) etedezel 2
S_ . . . .
e% 3. egs_leésegsﬂ. Since any nonzero monomial must not contain e4 in

this, it may only come from

* 2, 25—-6\ 2 2 2 3.2 25-2 25-3 4 1 2
s (w1w2 ) 616263 . 61626365 66 “ e 625_1625 €2s+1
ok 2,,.25—6\ 5 4 3 25-2 25-3 4 1 2
=T (w1w2 ) 61626365 66 e 625_1625625+1.

Here, in nonzero monomials, we must have e%, so the only candidates for

nonzero monomials are those two obtained from

2 2°—6 5 4 3 2°-2 2°-3 4 1 2
(e1+e2) (ere2)” ejeqeser T Ceg ... €9s_1€ps€hs g

2541 _25-2 3 25-2 25-3 4 1 2
=€ €9 €36 €g e 625_1623625+1

=0

21 .25 3 252 253 4 1 2
+e] ey eze; e U...€3s_1€3s€35,1 # 0.

#0

Hence Bs # 0 and we obtain B = By + By = 0. O

We have shown that the value of (3.2) is A+ B # 0, hence (3.1) does not
vanish, and Theorem 2.4(i) is proven. [
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AN OUTLINE OF THE PROOF OF 2.4(ii). To prove that wy(Gas434) # 0
for ¢ = 3 - 2%, it suffices to show that the cohomology class

(3.9) Wq(Gasiaa) - wi Swy

in the cohomology group H'P(Gasys4;Z9) = Zy does not vanish. In the
same way as in part (i), we have that the value of (3.9) is the same (zero or
nonzero) as the value of
2543 s

+ ] w28

(8:10) V=i (@4(Gorpaa) - wi %) = [w(y @ w(r)” ] - wi

in H*P(Gasy24;Z2). Since dim(Gasqo4) = 4(25—2) < 2- 2571 we have w2 ™!

%
=0 for i = 2,3,4. By [11], in Gas42.4, we have height (w1) = 257! — 1, hence

w%sﬂ =0 and IU(’Y)QSJrl = (1 +w +ws + w3 + 11)4)25+l =1. We can trans-

form (3.10) to
2°4-3 s_
V=[wy@ywhrt) ] wi T

= [wr@Muet) Pum? ] i

s—1 )
= [y @ w(y)* 7] wi ™t = [w(v @y)w(y)- 1 w(v)ﬂ cwp

Let us denote P := w(y@7)w(y) - T3 w(y)? (for s = 3, we put [Ty w(7)*

=1). Then we can write

V= [P]S-QS .w%—*—s + [P]5-23—1 'w%ﬁl 'wfs_g + [P]2S+1 'UJ%SA 'w%s_g

=A =B =C

+ [Plyge s -wd w4 [Pl wd w8,

=D =F

Since w;(y® ) =0 for i 2 13, we know that [P], =0 for all k exceeding
124+444(4+8+---+2°72) =251 So [Pl 5. = [Ply9s-1 =0, and A = B
= 0. It remains to find the values of C, D, E. Again, one uses Fact (c¢). We
take V as a polynomial in wi, ws, ws, and wy; therefore any nonzero mono-
mial in 7" (u) - e§e%63€gs_3egs_4 ...e9s41 is of the form eill 6%26?6246?)5_36%5_4
...e2s41, where {i1,12,13,14} = {2° — 2,25 — 1,2%,2° + 1}. Of course, the top-

g 9s—2
wi+4+8+ +2 ]

dimension component of P is [Pyt = wia(y ® ) - Since

wi2(y ® 7) = wiw? + wiwiw? + wj, we obtain

_ 4,2 2,2 2 4y, 25713 251 9258
C = (wiw; + wiwsws + w3) wy wy Wy
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25—4_ 2 2s—1_1 256, 257142
_"_ +

s—1 s—1__ s__ s—1 s—1__
= w2 A2 2 I A e AT A

2
wy Wy W3 Wy 1 Wy 3Wy
:=C1 :=Cs :=C3
We have
* 3 .2 _ 25—
7 (Ch)ejeses = (e1 + e2 + e3 + eq)
25—1 25—171 3 2
- (e1ea + e1e3 + ereq + ezez + eseq + e3e4) (erezezey) e1eses
2371 2 2871 1 2571 2571_1 2571_4
=ef TPy el e (e1 4 €2+ €3+ e4)

s—1
. ((61 +ex+e3+eq)(erea + eres + ereq + ezez + ezeq + 6364)) 2

o 2371+2 25714’»1 25—1 257171 25—174
=€ € €3 € (e1+ €2 +e3+ es)

e; €5 el e e3 el e e}

. < 28 23—1 + ( 23—1 23—1 23—1 23—1 23—1 23—1
J

2571 2371 2371 2571 2571 2371
+ 61 63 64 -+ 62 63 64 ) .

From the last parentheses, neither 6?563571 (the exponent of e; would grow

to at least 25+ 2571 —1 > 2%+ 1), nor 623_16?5_1639_1 (the exponent of e;

would grow to at least 2571 + 2571 4+ 2 > 25 4 1) can contribute to nonzero
monomials in the top dimension. We are left with
s—1 s—1 s—1 s—1__ s—1_ s—1 s—1 s—1
e 22T T T ey ey +e3 4 eq)’ 1272 62

_ 257142 2841 28 91 28
= e e; ey ey (er+ex+es+eq)

To obtain a nonzero monomial in the top dimension, we must not increase

_1_4

the exponents of ea, e3, e4 after multiplying 6%571+26%S+1€§562571 by the last
parentheses. So we conclude that

* 32 253 25—149 2541 925 9251 25—1_4 253
7 (Ch)ejezese; 7 ... exsqy1 = €] e5 ez ey €] er U...€e2541

_ ,2%-2 2541 2% 2°5-1 25-3
=€ €9 €3 €4 €y e €C254 1,

which is nonzero, and therefore also C; # 0.
In an analogous way, one proves that
Coy=C3=0 for s> 3, Cy,C3 #£0 for s =3,
and so one obtains that (for any s 2 3) C=C1 4+ (Co +C5) =C1 +0 #0.
Similarly to the above, one can show that
D=FE=0 fors>3, D, E#0 fors=3;

details are omitted.
Finally, we have V.=A+ B+ C+ (D+ E)=0+4+0+ C + 0 # 0, which
proves Theorem 2.4(ii). O
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